- 摘 要
-
(遼寧工程技術(shù)大學建筑工程學院,阜新123000)
[摘要] 近年來在役土木工程結(jié)構(gòu)的安全性越來越受到重視,而混凝土材料的長期強度在土木工程結(jié)構(gòu)的安全性及耐久性評估中扮演中重要角色。在土木工程結(jié)構(gòu)的長期服役中,混凝土的強度會慢慢下降。準確地預測出混凝土材料在長期使用過程的強度退化對于正確評估結(jié)構(gòu)安全性有著重要的意義。影響混凝土材料長期強度的主要因素包括環(huán)境類別、齡期、氣候條件、水灰比、膠凝材料用量等等。本文選取具有強大模式識別能力的人工神經(jīng)網(wǎng)絡工具進行混凝土長期強度的預測研究。首先以混凝土齡期、結(jié)構(gòu)所處環(huán)境類別、水膠比以及粉煤灰用量作為神經(jīng)網(wǎng)絡輸入,以混凝土長期強度作為網(wǎng)絡輸出建立三層BP神經(jīng)網(wǎng)絡,之后用試驗及公開文獻中的混凝土實測強度數(shù)據(jù)進行網(wǎng)絡訓練及測試。測試結(jié)果表明,經(jīng)過訓練的人工神經(jīng)網(wǎng)絡能夠準確地預測混凝土材料的長期強度,其誤差控制在7%以內(nèi),可以滿足工程的需要。
[關(guān)鍵詞] 混凝土;長期強度;人工神經(jīng)網(wǎng)絡;預測
中圖分類號:TU375 文獻標識碼:A 文章編號:1002-848X()
*國家自然科學基金資助(51008148)。
作者簡介:楊曉明,博士,副教授,碩士生導師,主要從事結(jié)構(gòu)損傷識別及耐久性研究,Email:xiao_m_y@163.com。
Prediction of long-term strength of concrete based on artificial neural network
Yang Xiaoming, Li Fuzhai, Shi Dan
(College of Civil Engineering and Architecture, Liaoning Technical University, Fuxin 123000, China )
Abstract: Recently, the safety of existing civil engineering structures attracts more and more attention. The long-term strength of concrete plays a key role during the assessment of safety and durability for civil engineering structures. The strength of concrete will gradually decrease during the service of civil engineering structures. It is significant to accurately predict the strength deterioration of concrete for correctly evaluating the safety of structures. The factors affecting the long-term strength of concrete include environment type, age, climate, water cement ratio, amount of cementing material and so on. In this paper, artificial neural network with powerful mapping ability has been selected to predict the long-term strength of concrete. First, there-layer BP neural network with age, type of environment, water cement ratio, amount of fly ash as input and long-term strength as output was built. Then, the neural network was trained by the samples measured in real structures and the well-trained neural network was test. From the test results, the trained neural network can accurately predict the long-term strength of concrete with the error less then 7%.
Keywords: concrete; long-term strength; artificial neural network; prediction
參 考 文 獻
[1] 歐進萍. 重大工程結(jié)構(gòu)智能傳感網(wǎng)絡與健康監(jiān)測系統(tǒng)的研究與應用[J]. 中國科學基金,2005,19(1):8-12.
[2] 潘洪科,邊亞東,楊林德. 鋼筋混凝土結(jié)構(gòu)基于耐久性劣化度的可靠性分析[J]. 建筑結(jié)構(gòu)學報,2011,32(1):105-109.
[3] 程云虹,劉斌. 混凝土結(jié)構(gòu)耐久性研究現(xiàn)狀及趨勢[J]. 東北大學學報,2003,24(6):600-605.
[4] 陳劍毅,胡明玉,肖燁,等. 復雜環(huán)境下礦物摻合料混凝土的耐久性研究[J]. 硅酸鹽通報,2011,30(3):639-644.
[5] 張云清,余紅發(fā),王甲春. 鋼筋混凝土構(gòu)件的抗鹽凍性能研究[J]. 硅酸鹽通報,2010,29(2):345-351.
[6] 蔣思晨,李曉麗,張鵬遠. 不同粉煤灰摻量高強混合骨料混凝土力學性能及本構(gòu)關(guān)系試驗研究[J]. 硅酸鹽通報,2011,30(5):989-994.
[7] OKAN KARAHAN, HARUN TANYILDIZI, CENGIZ D ATIS. An artificial neural network approach for prediction of long-term strength properties of steel fiber reinforced concrete containing fly ash [J]. Journal of Zhejiang University(Science A:An International Applied Physics & Engineering Journal), 2008, 9(11): 1514-1523.
[8] 聶法智,王天柱,李麗霞. 混凝土后期強度評定的研究及應用[J]. 粉煤灰綜合利用, 2008(1):40-42.
[9] 蘇崢. 摻粉煤灰C60泵送混凝土的配制及應用[J]. 混凝土,1996(2):31-36.
[10] 趙勝利,劉燕. 基于RBF網(wǎng)絡的商品混凝土強度預測分析[J]. 計算機工程,2005,31(18):36-37.